Example 2.
The singular control

When solving optimal control problems in the previous chapters, we used the maximum principle as one of the most effective optimization methods. At the same time, we established that not every control satisfying the max​imum principle is optimal, which is a consequence of the insufficiency of the optimality condition. Moreover, application of the maximum principle may involve other major difficulties.
In both examples considered above (regardless of whether the optimality conditions were sufficient or not), we started the analysis of the maximum condition with expressing the control in terms of the other unknown quan​tities, However, this method sometimes turned out to be ineffective because the maximum principle appeared to be degenerate, which brings up the notion of a singular control.
We shall show that a singular control may be optimal or nonoptimal. There may exist more than one singular control, or even infinitely many singular controls. One of the necessary conditions for a singular control to be optimal is the Kelly condition.
2.1.     PROBLEM FORMULATION

Consider a system described by the Cauchy problem
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 (2.1)
The control u = u(t) belongs to the set
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The optimality criterion is given by the formula
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Problem 2. Find a control 
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 that provides the minimum of the functional I on the set U.
Note that both the state equation and the set of admissible controls are very simple and are defined the same ways as in the previous examples. The functional to be minimized is even simpler than before. It is obviously bilinear, i.e., in addition to being linear with respect to the control and the state function, it also includes their product. This problem can hardly be called very complex and therefore one would not expect any surprises. To solve the problem, we shall apply the method based on the maximum principle that was used above.
2.2.      THE MAXIMUM PRINCIPLE

To reduce the problem to the standard form, we introduce the following notation:
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Following the technique described in the previous chapter, we define the function
H = H(u) = pu - их.
Then the adjoint system is written as follows:
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 (2.2)
According to the maximum principle, the optimal control must provide the maximum of H on U, i.e., it must satisfy the equality
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(2.3)
Hence, we have the problem (2.1)-(2.3) for the optimal control, which is similar to the relevant systems considered above. We shall used the previ​ously developed technique to analyze these relations. 
2.3.     ANALYSIS OF THE OPTIMALITY CONDITIONS

First of all, we need to express the control in terms of the other unknown functions from (2.3). Using standard methods, we find the derivative
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Since this expression does not depend on the control explicitly, we conclude that H (which is a linear function) does not have local extrema. With no stationary points, H may have relative extremum only on the boundary of the set of admissible controls. 
The boundary values are
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Then the solution of the maximum principle is given by the formula 1,     

[image: image10.wmf]î

í

ì

=

<

-

>

-

0.

 

  

)

(

)

(

  

при

,

0

  

)

(

 

)

(

  

при

  

,

 

1

-

 

   

,

 

1

  

  

  

)

(

t

x

t

р

t

x

t

р

t

u

  ,                        (2.4)
i.e., in general, the optimal control must be piecewise-constant.
Consider the system (2.1), (2.2), (2.4). The solution of problem (2.1) obviously has the form
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The solution of problem (2.2) is obtained similarly:

[image: image12.wmf].

 

)

(

-

  

  

)

(

1

ò

=

t

d

u

t

р

t

t


We now find the difference
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Substituting this value into (2.4), we have
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                             (2.5)
We have obtained a special equation for the control, which can be called integral in a certain sense. Although this relation is by no means a classical integral equation, we may readily apply the method of successive approxima​tions in order to solve it. According to this method, each new approximation of the control is determined from the right-hand side of equality (2.5), in which the control is taken from the preceding iteration. However, this equa​tion has a specific feature that allows us to analyze this problem directly.
The right-hand side of (2.5) obviously does not depend on time. Therefore, the control is constant and, by formula (2.5), it is equal to either 1 or -1. However, if u(t) = 1, then the integral of the control is positive, and if u(t) = -1, then the integral is negative. Hence, equation (2.5) has no solutions.
Conclusion 2.1. The problem (2.1), (2.2), (2.4) has no solutions.
These results may lead to the conclusion that the optimality conditions have no solutions at all. The unsolvability of the necessary optimality con​ditions has important consequences because the set of solutions of the max​imum principle is, in general, larger than the set of optimal controls (as mentioned in the previous example). In what follows, we shall show that Problem 2 is still solvable. It follows that the corresponding optimal con​trol must satisfy the maximum principle (2.3). The question arises of how the unsolvability of the system (2.1), (2.2), (2.4) agrees with the fact that the maximum condition (2.3) must necessarily hold for the optimal control. If the maximum principle has no solutions, the consequences are dramatic, since we shall have to acknowledge that it is not a necessary optimality con​dition because it does not hold for the optimal control. The only way to overcome this obstacle is to admit that (2.4) and (2.3) are not equivalent.
Conclusion 2.2. Relations (2.3) and (2.4) are not equivalent.
Indeed, the stationarity condition for the problem in question is reduced to the equality
р(t) – х(t) =0 ,  t((0,1).
Taking into account the values of the functions x and p determined above, we write this equality in the form
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In this case, the maximum principle (2.3) can be written as follows:
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Then the following condition holds:
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Obviously, both sides of the foregoing equality vanish for any function u from the set of admissible controls that satisfies (2.6). In this case, this maximum principle is said to be degenerate. Every element of the set
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is called a singular control and satisfies the maximum principle (2.3) in a | specific way.
Remark 2.1. The characteristic feature of a singular control is that it makes the function H independent of the control since the coefficient of the control becomes zero. Thus, the function H has the same value for all controls and the maximum condition holds in the trivial (degenerate) form: 0 = 0.
Conclusion 2.3. While using the maximum principle, one should take to account that there may exist singular controls.
The question arises of how large is the class 
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 of singular controls. It obviously contains the function identically equal to zero and functions of the form
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for any 
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 for natural k also belong to 
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, as well as many others (see Figure 13).
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Figure 13. Examples of singular controls in Problem 2
Remark 2.2. Every function such that the area under its curve on the given time interval is equal to zero is a solution of the integral equation (2.6), i.e. a singular control (see Figure 13).
Conclusion 2.4. For Problem 2, there exist infinitely many singular controls that are solutions of the maximum principle. (Moreover, the set of these controls is uncountably infinite.)
Thus, all solutions of the maximum principle for the problem under consideration are singular controls. We know that an optimal control must satisfy the maximum principle. It is required to find out which of the singular controls is optimal.
We now try to find the value of the functional at an arbitrary singular control, i.e., at an admissible control satisfying (2.6). This task may seem unrealistic since we cannot even write an explicit formula for an arbitrary singular control. Indeed, the power of the set of singular controls is not less than that of the continuum. Nevertheless, this will not prevent us from solving the problem. Substituting the value of the control written in terms of the system state from equation (2.1) into the formula for the optimally criterion, we have
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Using the expression for the solution of problem (2.1), we obtain

[image: image26.wmf]0

  

  

 

  

  

)

(

1

0

2

1

ò

=

=

dt

u

u

I

 


(2.7)
by condition (2.6).
We conclude that the value of the functional to be minimized is non-negative and it may vanish only at the controls that belong to 
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, i.e., the singular controls.
Conclusion 2.5. Every singular control in Problem 2 is optimal.
Conclusion 2.6. The optimal control problem in question has infinitely типу solutions, the set of solutions being uncountable infinite.
It is interesting to find out why the optimal controls are nonunique. Problem 2 is obviously equivalent to the variational problem of minimizing lire functional defined by formula (2.7) on the set U. Note that this func​tional is convex (as a result of the linear operation of integration followed by the convex operation of raising to the second power), but it is not strictly convex. In particular, for the functions и and v satisfying the equalities
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with α = 1/2, we have
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Thus, the assumptions of Theorem 2 on the uniqueness of solution of the optimal control problem do not hold.
Conclusion 2.7. The convexity of the functional being minimized is not sufficient for the optimal control to be unique.
Remark 2.3. A similar result for functions was obtained earlier (see Figure 7). In that case, the number of solutions of the extremum problem was also uncountably infinite.
We already know that every solution of the maximum principle in the present example is a singular control, and every singular control is optimal.
Conclusion 2.8. The maximum principle is a necessary and sufficient optimality condition for Problem 2.
The question arises of whether all singular controls are optimal. If this is true, solution of the optimization problem would be reduced to finding a singular control (if any).
3.4.     NONOPTIMALITY OF SINGULAR CONTROLS
We now consider an optimal control problem very similar to the previous one. Assume that we have a system described by equation (2.1) and the set of admissible controls and the optimality criterion are of the same form as in the previous example.
 Problem 2'. Find a control 
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The maximum condition (2.3) becomes
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(2.8)
Condition (2.8) obviously holds for all elements of 
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, which means that we again have infinitely many singular controls.
Remark 2.4. A control that is singular for the problem of minimizing the functional will necessarily be singular for the problem of maximizing the functional. It is obvious because in the case of singular controls the function H becomes independent of the control. Thus, the type of extremuni is of little importance here.
We proved earlier that every singular control minimizes the given func​tional. Therefore, singular controls cannot be optimal for the problem under consideration.
Conclusion 2.9. Not every singular control is optimal.
Since singular controls that satisfy (2.8) are not optimal for Problem 2', the maximum principle does not guarantee the optimality of controls.
Conclusion 2.10. The maximum principle is not a sufficient optimality condition in Problem 2'.
It is required to find out why the optimality conditions are sufficient in Problem 2, but not sufficient in Problem 2'. When analyzing Example 1, we have established that the maximum principle is the sufficient optimality condition for the problem of minimizing the functional if the correspond​ing remainder term η is nonnegative. For the problem of maximizing the functional, the same assertion holds with 
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As is known, the remainder term is denned by the formula
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(2.9)
where 
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 depends on the second derivative of H with respect to the system state and 
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 includes the increment both with respect to the control and to the system state. Equation (2.1) and the optimality criterion are linear with respect to the system state. Hence 
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 = 0 and the remainder term depends only on
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Since H = pu - ux, it follows that 
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=(u - v)∆x. Then the formula for the remainder term is
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Equation (2.1) implies that the increment of the control v — и is equal to the derivative of the state increment ∆x. Hence, the increment of the functional is

[image: image41.wmf](

)

.

2

)

1

(

  

  

 

 

  

  

 

 

    

  

2

1

0

2

1

0

2

1

x

dt

x

dt

d

dt

x

х

D

=

D

=

D

D

=

ò

ò

&

h


Since the functional was being minimized in Problem 2, the nonnegative remainder term guaranteed the sufficiency of the maximum principle and, consequently, the optimality of all its solutions. In Problem 2', it is required to maximize the functional and therefore the sign of the remainder term is opposite to what is desired. It is now easy to see why the optimality condition is not sufficient, i.e., its solution is not optimal.
We have established that none of the singular controls in Problem 2' is optimal. Now we have to find a solution to this problem. Note that only the degenerate case of (2.8) was considered. However, the optimality condition may have nonsingular solutions. In this case, instead of the optimality condition (2.5) for nonsingular solutions, we have
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This equation has two solutions identically equal to 1 and —1, respectively.
Conclusion 2.11. The maximum principle may have both singular and nonsingular solutions.
According to formula (2.8), every admissible control that maximizes the integral of the squared control is optimal. This assertion obviously holds for the functions identically equal to 1 or —1. 
Conclusion 2.12. Problem 2' has two solutions which are nonsingular solutions of the maximum principle.
Once again we have solved the problem despite that the optimally con​dition in the form of the maximum principle was essentially insufficient.
Remark 2.5. Singular controls in Problem 2' minimize (rather than maximize) the functional. We proved again that nonoptimal solutions of the maximum principle may contain information on important properties of the optimality criterion.
In both cases considered above, there existed infinitely many singular controls. The question arises of whether it is always the case.
2.5.      UNIQUENESS OF SINGULAR CONTROLS

Consider the following system:
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 (2.10)
The control и = u(t) again belongs to the set
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The optimality criterion is defined by the formula
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Problem 2".  Find a control 
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 which minimizes the functional I on the set U.
We put
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Then the adjoint system has the form
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 (2.11)
The corresponding maximum condition is written as follows:
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(2.12) 
Since the function H is linear, it seems to achieve the maximum value only on the boundary of the set of admissible controls, which implies
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Thus, one would conclude that the absolute value of the optimal control is identically equal to unity.
However, the problem in question is so simple that its solution may be found directly, without using the maximum principle. Indeed, by definition, the functional to be minimized is nonnegative. In vanishes only when the system state is identically equal to zero, which can happen only for the control и = 0. The latter is an admissible control; therefore, it is optimal.
Conclusion 2.13. Problem 2" has a unique solution u = 0.
This result apparently contradicts (2.13). However, equality (2.13) rep​resents only nonsingular solutions of the maximum principle (if they exist). The contradiction between (2.13) and the form of optimal control established above suggests that the maximum principle defines some singular controls.
If we don't take into account the controls defined by formula (2.13), the maximum condition (2.12) holds only in the case where the coefficient of the control is equal to zero. As a result, we have p = 0. From problem (2.11) it follows that the solution of the adjoint system vanishes only for x = 0. Substituting this value into (2.10) we find the control и = (I, which is optimal, as we already know.
Conclusion 2.14. Problem 2" has a unique singular control.
Conclusion 2.15. The singular control in Problem 2" is optimal.
Thus, in contrast to the problems considered before, we have the case of a unique singular control which turned out to be optimal.
It is interesting to find out whether the maximum principle is a sufficient optimality condition in this case. In formula (2.9) for the remainder term, only 
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 is nonzero. This quantity includes the squared increment of the system state and is defined by the formula
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Then the remainder term is
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Since the remainder term is nonnegative, the optimality conditions are necessary and sufficient.
Conclusion 2.16. The maximum principle in Problem 2" is a necessary and sufficient optimality condition.
Remark 2.6. We shall obtain the system (2.10), (2.11), (2.13) again in Example 3 and prove that it has no solutions.
Remark 2.7. We shall return to Problem 2" in Example 5. We shall demonstrate one more serious issue in this problem in addition to its singular control.
In parallel with Problem 2", we consider the following optimization prob​lem.
Problem 2'". Find a control 
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 maximizing the functional I on U. 
Condition (2.12) is now replaced by
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Here we have the same unique singular control и — 0, which is not opti​mal because it minimizes (rather than maximizes) the functional. Therefore, (2.14) must have solutions represented by nonsingular controls.
Obviously, (2.14) implies
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which differs from (2.13) only in its sign. It is interesting that the system of optimality conditions (2.10), (2.11), (2.15) already appeared in Exam​ple 1. As is known, there is a countable set of solutions to the problem in Example 1: for any number of discontinuity points, there are two solutions which differ only in their signs. Repeating the calculations of Example 1, we conclude that the optimal controls are the functions identically equal to 1 or -1.
Conclusion 2.17. The maximum principle in Problem 2'" is not a sufficient optimality condition. Moreover, the unique singular control is not optimal.
Conclusion 2.18. Problem 2'" has two solutions.
Remark 2.8. In Problem 2', there were infinitely many nonoptimal singular controls and two nonsingular optimal solutions of the maximum principle. In the present case, on the contrary, there are infinitely many nonoptimal nonsingular solutions of the maximum principle and a unique singular optimal control.
We see that the existence of a singular control in optimization problems is not very unusual. Moreover, there may be as many singular controls as possible and these controls may be optimal or nonoptimal. The question arises of whether there exists a singular control in every problem.
We now return to Example 1. The function H was defined by the formula
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Any change in the control will obviously cause a change in the function H. We can make the first term in the right-hand side of this formula vanish by choosing the control so that p vanishes. However, we cannot get rid of the squared control in this expression. Therefore, there is no singular control in this case.
Conclusion 2.19. Singular controls do not necessarily exist in every problem.
A singular control obviously may exist if Я has the form
Nero if there exits a control such that the functions x and p satisfy the equality 
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, then this control is singular.
Remark 2.9. The foregoing equality may be considered as a problem of finding a singular control.
The last question to answer is how to determine whether a given singular control is optimal.
2.6.    THE KELLY CONDITION

In the previous sections, we checked singular controls for optimality by an​alyzing the sign of the remainder term in the formula for the functional increment. However, as mentioned before, the sign of the remainder in can be determined only in very simple cases. Besides, this method is im​plied in the case of arbitrary form of solutions of the maximum principle whereas singular controls have some specific properties that makes them dif​ferent from other solutions. Therefore, there may exist some relations that could allows us to establish the optimality criterion specifically for singular controls.
Indeed, there exists a series of optimality conditions for singular controls. We shall consider only one of them, possibly the most commonly used. The following statement presents the so-called Kelly condition.
Theorem 4. If the functions in the problem formulation are sufficiently smooth, then the optimal singular control satisfies the Kelly condition.
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Remark 2.10. The proof of this theorem is beyond the scope of this book.
Remark 2.11. Relation (2.16) is written for the problem of minimizing the functional. In the case of maximizing the functional, the sign in (2.10) must be reversed.
To use the Kelly condition, we should first find a singular control and then determine the value of the expression in the left-hand side of (2.16) at this control. Our purpose now is to find out if the Kelly condition holds for the problems with singular controls considered above. In particular, the following equality holds for Problem 2":
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Taking into account the form of the adjoint system (2.11), we find the derivative
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Using equation (2-10), we obtain
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Finally, we have
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which leads us to the following conclusion.
Conclusion 2.20. The Kelly condition holds for Problem 2".
Hence, the corresponding singular control may be optimal. In fact, as we already know, it is optimal. As far as Problem 2'" is concerned, since the functional therein is being maximized, the sign in (2.16) must be reversed. As a result, the Kelly condition fails.
Conclusion 2.21. The Kelly condition does not hold for Problem 2"'.
This means that the corresponding singular control cannot be optimal, as was shown before. Thus, we have verified the effectiveness of the Kelly condition.
For Problem 2, we have
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Using equations (2.10), (2.11), we obtain
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Differentiating this equality with respect to t and then with respect to u, we see that the Kelly condition in Problem 2 becomes an equality. Therefore, all the corresponding singular controls may be optimal. Indeed, we already know, they are optimal.
Conclusion 2.22. The Kelly condition holds for Problem 2".
Problem 2' differs from Problem 2 only in the type of extremum. There​fore, if (2.16) holds in the form of equality for the corresponding function H, then the Kelly condition holds for this problem as well. This implies that singular controls in Problem 2' may be optimal (however, in fact, they are not.
Conclusion 2.23.   The Kelly condition holds for Problem 2', but its singular controls are not optimal. 
The foregoing result is not contradictory. We know that every optimal singular control must satisfy the Kelly condition. Hence, if the Kelly condi​tion fails, it means that the corresponding singular control is not optimal, However, if the Kelly condition holds, it does not guarantee the optimally of the singular control.
Conclusion 2.24. The Kelly condition is necessary but not sufficient for the optimality of singular controls.
Remark 2.12. For a function f to have a minimum at a point x, it is necessary that f'(x) = 0. It is required to verify the additional condition f"(x)>0 for the obtained solution of the last equality. If it fails, x is not a point of minimum for the given function. We used the same approach earlier when we studied the maximum condition. In applying the Kelly condition, the situation is completely analogous. First of all, we find singular solutions of the maximum principle and then verify if the Kelly condition holds for them. If it does, then the obtained singular control may be optimal; otherwise, the control is certainly nonoptimal.
Remark 2.13. The Kelly condition is an optimality condition of the second order since its definition involves the second derivative of the func​tion H with respect to the control.
Remark 2.14. We still have not solved the problem of existence of sin​gular controls, nor have we studied the methods of finding singular controls in the problems of the general form. One of the methods of finding singular controls will be presented in Example 5.
SUMMARY

The following conclusions can be made on the basis of the analysis we have carried out.
1. The maximum principle may be degenerate in some cases, which means that it may have specific solutions called singular controls.
2. The maximum principle may have singular and nonsingular controls in any combination: either only one kind or both kinds at the same time.
3. If the functional to be minimized is convex but not strictly convex, then the optimal control problem may have more than one solution,
4. The set of singular controls can be finite or infinite.
5. Singular controls (like other solutions of the maximum principle) can be optimal or nonoptimal.
6. Optimal singular controls satisfy the Kelly condition.
7. Nonoptimal singular controls may or may not satisfy the Kelly condi​tion.
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